

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FICHA DE COMPONENTE CURRICULAR

CÓDIGO:	COMPONENTE CURRICULAR: INSTRUMENTAÇÃO BIOMÉDICA I	
UNIDADE ACADÊMICA OFERTANTE: FACULDADE DE ENGENHARIA ELÉTRICA		SIGLA: FEELT
CH TOTAL TEÓRICA:	CH TOTAL PRÁTICA:	CH TOTAL:
60 horas	30 horas	90 horas

1. **OBJETIVOS**

Ao final do curso o estudante deverá ser capaz de: Identificar conceitos e características importantes relativos ao projeto e desenvolvimento de equipamentos eletromédicos; Projetar e construir equipamentos (hardware e software) para medição de biopotenciais; Demonstrar conhecimento básico a respeito das normas nacionais e internacionais para produção e comercialização de equipamentos eletro-médicos; Demonstrar capacidade de dedução, raciocínio lógico e de promover abstrações.

2. **EMENTA**

Conceitos básicos de instrumentação biomédica; Fundamentos de fisiologia e propagação de biopotenciais; Eletrodos para biopotenciais; Medições de biopotenciais; Princípios, normas e regulamentações base para equipamentos eletro-médicos.

3. **PROGRAMA**

- 1 Conceitos básicos de instrumentação biomédica
- 1.1. Terminologia e dispositivos médicos
- 1.2. Fatores limitantes para medições biomédicas

1.3. Critérios para projeto

2 - Fundamentos de fisiologia e propagação de biopotenciais

- 2.1. Potencial de membrana Potenciais de ação
- 2.2. Volume condutor
- 2.3. Ângulos sólidos

3 - Eletrodos para biopotenciais

- 3.1. A interface eletrodo pele princípios
- 3.2. Polarização de eletrodos
- 3.3. Modelos de circuitos Artefatos
- 3.4. Eletrodos de superfície e invasivos
- 3.5. Arrays de eletrodos

4 - Medições de biopotenciais

- 4.1. Eletromiograma, Eletrocardiograma e Eletroencefalograma.
- 4.1.1. Aspectos anatômicos/fisiológicos
- 4.1.2. A geração do "sinal"
- 4.1.3. Detecção e padrões para posicionamento e tipos de eletrodos
- 4.1.4. Elementos para captação e condicionamento de sinais:
- 4.1.5. Amplificadores de instrumentação
- 4.1.6. Amplicadores de uso geral
- 4.1.7. Filtros
- 4.1.8. Sistemas de conversão A/D
- 4.1.9. Exemplos de circuitos eletrônicos Análise de sinais

- 5 Princípios normas e regulamentações base para equipamentos eletro-médicos
- 5.1. Regulamentações ANVISA e Normas IEC ABNT 60601
- 5.2. Boas práticas de fabricação de produtos médicos
- 5.3. Ensaios básicos e o processo de certificação de equipamentos eletromédicos

BIBLIOGRAFIA BÁSICA 4.

- 1. GEDDES, L. A.; BAKER, L. E. Principles of applied biomedical instrumentation. 3. ed. New York: John Wiley & Sons, 1989.
- 2. PRUTCHI, David. Design and development of medical electronic instrumentation: a practical perspective of the design, construction, and test of medical devices. Hoboken: Wiley-Interscience, c2005. xv, 461 p., ill., 29 cm.
- 3. WEBSTER, J. W. Medical instrumentation: application and design. 4. ed. Hoboken: J. Wiley, 2010.

5. **BIBLIOGRAFIA COMPLEMENTAR**

- 1. TOGAWA, T. Biomedical transducers and instruments. Boca Raton: CRC, 1997.
- 2. BRONZINO, J. D. (Ed.). The biomedical engineering handbook. Volume 1. 3. ed. Boca Raton: CRC Press, 2006.
- 3. LI, Qing. Real-time concepts for embedded systems. San Francisco: CMP Books, 2003. xii, 294 p., ill., 24 cm. Includes bibliographical references (p. 281-283) and index. ISBN 1578201241 (alk. paper).
- 4. MALVINO, A. P. Eletrônica. 4. ed. São Paulo: Makron Books do Brasil, 2016.
- 5. RANGAYYAN, Rangaraj M. Biomedical signal analysis: a case-study approach. Piscataway; New York: IEEE Press: Wiley-Interscience, c2002. 516 p., il. (IEEE Press series in biomedical engineering). Inclui bibliografia e índice. ISBN 0471208116.

APROVAÇÃO 6.

Adriano de Oliveira Andrade Sérgio Ferreira de Paula Silva Coordenador(a) do Curso de Graduação em Engenharia Biomédica Diretor(a) da Faculdade de Engenharia Elétrica

com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Sergio Ferreira de Paula Silva, Diretor(a), em 10/04/2019, às 11:00, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador_externo.php? acao=documento conferir&id orgao acesso externo=0, informando o código verificador 1152200 e o código CRC 6628A637.

Referência: Processo nº 23117.028073/2019-72 SEI nº 1152200